Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.

نویسندگان

  • Zhi-Bin Luo
  • Dennis Janz
  • Xiangning Jiang
  • Cornelia Göbel
  • Henning Wildhagen
  • Yupeng Tan
  • Heinz Rennenberg
  • Ivo Feussner
  • Andrea Polle
چکیده

Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus x canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K(+)-to-Na(+) ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis

Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...

متن کامل

Determination of Aluminum Stress Tolerance Threshold During Seed Germination of Wheat

Environmental stresses are the most important factors that reduce plant growth in stages of development. The presence of aluminum in acidic soils as an environmental stress has an impact on different parts of the plant and reduces root growth, water absorption and nutrients and increases susceptibility to drought.  In order to evaluate the effect of aluminum stress levels on wheat at germinatio...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

Degree of salt tolerance in some newly developed maize (Zea mays L.) varieties. Maria Zahoor*, Rehana Khaliq, Zafar Ullah Zafar and Habib-ur-Rehman Athar

Salinity is a major abiotic-stress worldwide which decreases crop growth productivity. The objective of the present study was to investigate whether salt stress has adverse effects on growth, photosynthetic efficiency, biochemical properties and nutrient status of maize. An experiment was carried out with seeds of four varieties of maize which were allowed to germinate for one week. Afterwards,...

متن کامل

Investigation of the Effect of Salinity and Drought Stress on Germination Characteristics of Strangle Wort (Cynanchum acutum) Seeds

DOR: 98.1000/2383-1251.1398.6.1.11.1. 1575.41 Extended Abstract Introduction: Strangle wort (Cynanchum acutum) is a perennial weed that could be propagated by seeds and vegetative organs. This brings about harvesting problems for some crops such as cotton, sugar beet, wheat and maize. In recent years, this weed has caused huge losses in sugar cane fields. The role of environmental condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 151 4  شماره 

صفحات  -

تاریخ انتشار 2009